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1. INTRODUCTION

Let f(z) be a function analytic in a neighborhood of 0. The GonCarov
constant G is the infimum of the numbers ¢ for which there exists a function f
analyticin| z | < 1, f 5= 0, and a sequence of points {z,}5.¢ , | 2n| < ¢/(n + 1),
such that f(z,) = 0. The Whittaker constant W is defined similarly for
functions of exponential type 1, and with | z,, | << ¢. In [1], Boas conjectured
that G = W, and this conjecture was settled in the affirmative by the first
author in [2].

Pommiez [3] has studied a problem which bears a striking resemblence to
the above. The shift operator % transforms the function

fz) = i a,z® nto  Lf(z) = i a,z" L

n=1

For k = 0, 1, 2,..., the kth iterate of .# is given by

) = Y, ah.
n=k

Pommiez defines the Whittaker constant for the shift operator to be the

infimum of the numbers ¢ for which there exists a function f analytic in

|z <1, £ 0, and a sequence of points {z,}; 4, | z,| << ¢, such that
112
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F*f(z,) = 0. He also defines a similar constant for entire functions of order p
and type =, with |z, | < ek + 1)'/°/(p7)!/>. In [4], Shaw proved that the
two constants for the shift operator were also equal.

In [5], we introduced a class of operators (% for analytic functions which
includes the derivative and shift operators as special cases. For a specific
operator & € (%, we define a growth measure for analytic functions called
E-type, and give a characterization of the behavior of the zeros of f, 2f,
2%,... for analytic functions of finite E-type. This characterization includes,
as special cases, the determination of the Whittaker constant for both the
shift and derivative operators. In this paper, we consider a more general
setting, in which the growth measure need not be defined in terms of the
specific operator &, and investigate the behavior of the zeros of f, Zf, 2%, ... .
We obtain a relationship between these zeros and functions of a certain
specified growth which allows us to conclude, in the special case of derivatives,
that G = W; also that equality holds between the two constants in the case
of the shift operator.

Let {d,}>_, denote a nondecreasing sequence of positive numbers, and let &
denote the operator which transforms the function

f(z) = i a,z" into 9f(z) = i dpa,z"

n=0 n=1

For k = 0, 1, 2,..., the kth iterate of & is given by

Qkf(z) = Z d, -+ dn—k+1anzn_k = Z (Cn—k/en) a,z"*,
n=~k

n=k

where ey = 1, and e, = (d; - d,)Y, n = 1,2,... . If d, = n, @ corresponds
to the ordinary derivative operator, which we denote by D. If d, =1, &
reduces to the shift operator .%.

Set

E(z) = Y e,z",
n=0

and let ¢(E) denote the radius of convergence of E. From the monotonicity
of {d,} we have

R<®

c(E) = }11_1)1; d, = , Sup d, .
Define the E-type of the function f(z) = X a,z" to be the number

7e(f) = lim sup | ay/e, [/* = lim sup | Z"f(0);*/.
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If ¢(E£) < oo, we see that
Te(f) = c(E)/c(f),

where ¢(f) denotes the radius of convergence of f. If E(z) is entire, E-type is
a growth measure introduced by L. Nachbin [6] which can be related to the
growth of the maximum modulus of £. In particular, if d, = », E-type agrees
with exponential type and E(z) = e~

We shall say the operator & possess a Whittaker constant if there is a
number W(2) with the following properties:

1 0 < W(2) < c(E);
(i) 1If 75(f) < W(2), and each of f, 2f, Z°,... has a zero in the closed
disk % = {z: | z| < 1}, then f = 0;
(iii) There exists a function F such that 7z(F) = W(Z) and each of
F, 9F, &*%F,... has a zero in %.

In [5), we proved that every operator & possesses a Whittaker constant,
and gave an exact determination for W(2).

For a function f analytic in a neighborhood of 0, let #,(f) denote the least
modulus of a zero of 2°f (r.(f) = oo if 27 has no zero), and define the
number #,(f) by

ha(f) = sup{r: 0 does not belong to the convex hull of Z%f(; z | < r)}.

Let {R,},_; be a second nondecreasing sequence of positive numbers. For
a function f(z) = Y a,z", we call the analogous growth measure

7r(f) = lim sup | @R, -~ R, '/
the R-type of f. Additionally, we require that the sequences {d,}_, and
{R,}my satisfy
(a) {dn41/d.}mq 18 @ nonincreasing sequence with limit 1;
() lim,,. Rypa/R, = 1.
Note that if we take R, = (n/p7)'/*, and f'is a function of R-type 1, then f'is

an entire function of order p and type 7.
We shall need the following results from [5].

THEOREM A. There is a function W whose E-type is W(Z) which has the
following properties:
(@ #Q0) = 1land| Z*¥ () < (W@ (k=1,2,..);
(b) maxyggy | ZHH(O)N/(W(D)** > 0.04 (n=0,1,2,.);
(©) eachof W', 2% , D*¥ ,... has a zero on the circle | z| = 1.
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THEOREM B. If fis an analytic function of E-type 1 or less, and f is not a
polynomial, then

lim sup /.(f) = W(9).
Our principal results are stated below.

THeOREM 1. Let f be an analytic function with R-type vx(f) < 1, and
suppose that f is not a polynomial. Then

lin)}jﬂup dL;;'gf—) = lin}}ﬂiup jd"—%'i(ﬁ = W(2). (LD

Moreover, there is an analytic function F with R-type vx(F) = 1 such that
equaliity holds in (1.1).

Note that if we take the sequence d, = n and R, = 1, we obtain an
equivalent form of the statement that G = W. Similarly, if we take
R, = (n/p7)!/» and d, = 1, we obtain equality of the two constants for the
shift operator.

2. THE SEQUENCE h,(f)

Let f(z) be an analytic function of R-type 1 or less. We begin by establishing
the inequality (1.1).

Suppose first that f'is of R-type strictly less than 1. For each positive integer
n for which a,.; 54 0, consider the sequence

gnf(RnZ/dn) _ Qﬂf(()) e

Apy1Rnty

fn(z) =

o
. an+kRnkenek Zk

o ndnten iR
Note that 7x(f,) = R,7z(f)/d. , and, therefore,

 dsUParn R dy
Un) = = Rorn) 2 ) =

Since the R-type of f is strictly less than 1, there is an infinite set S of
positive integers such that, if n € S,

ARy Ry

<1 k=20,1,2..).
ApaBy - Ry = ( )
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Hence, n €S, we have

< R,*e, !
| fa(2)] << ), R e |z |F

v k
Jo==0 n+1 Rn+ken+kdn

2.1)

We will use this estimate to show that the sequence {f,},.s is uniformly
bounded on compact subsets of ¢(E).
Note that

o0 et d 1
n+1 n+k %
22, dkeklz| z:: dldk]ZI

rr dn—Hc fz|¥ [*

© N i z
- dbd,  dF <ok )" s

k=0

and, hence, the radius of convergence of this series is at least d,, . Let

o

(]Sn(z)zz—en—ceklzlka EZ}<dn°

k=0 en+kdnl
Then, for each positive integer k, we have

€n — dn+1 dn+k

en+kdnk d,*
(dn+1 )( dnis dn+2) (dn+1 duis . dnix )

Zn Zn Zn+1 Zn Zn-u Zn-{% 1
<Cata e -G as)
_7 €n—1
B n+k ldk ’

since the sequence {d,_,/d,.},-, 1s nonincreasing. It follows that the sequence
{¢u(z)}%-n is nonincreasing for each zin | z | < d,, .

Now let K be a compact subset of ¢(E). Then we may choose an integer N
so large that K is a subset of | z| << dy . From (2.1) we conclude that

| fn(z)| ‘I)n(z) qSN(Z)a z ¢ Ka

for n > N. It follows immediately that the sequence {f,},cs 1S uniformly
bounded on compact subsets of ¢(E) and, hence, that there is a subsequence
{fn, }m—1 Which converges uniformly on compact subsets of ¢(E) to a function
g(z). Since Zg(0) = limy,.. Z*f, (0), k =0, 1, 2,..., and

lim (‘eﬁf&?)”m = Jim (e )y,
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we have 7£(g) = 1. Also, 2g(0) = lim,,,q, dy 1 Rm/Rimiady = 1, and, hence,
g Is a nonconstant function.

For j = 0, 1, 2,..., we have h(2'f,) = d,h,.,(f)/R,. Since g is a non-
constant function, we have

dy o .
m ___R_Q — ,1,,12}0 ho(fn,,.) = ho(g),

m->o

and
hm dnm+ihnm+j(f ) o 11 dnmhnm+j(f )
mos Ry o ms R,
= ,1,,1.1;% h](f n,,,)

= hy(g),

for every positive integer j such that Z’g is nonconstant. If, for some j, Z7g is
constant, let k - 1 denote the least such j. Then Z%g is a polynomial of
degree 1, and

dﬂ n,
lim sup _______er;h /) = (g) = +oo.
Therefore,
linnl_)iup i‘%l(f—) = 4o

if g is a polynomial, and

lim sup

n->w

d‘nhn
D) = s (o)

otherwise. Since
oSUP_ hy(g) > lim sup hy(g),
and rx(g) < 1, the result follows by applying Theorem B.
If fis of R-type 7x(f) < 1, we consider the function

fu@) =flaz), O<a<l
Then 1x(f,) = arx(f) < 1, and from the above we obtain

fm sup s £

n->w

=a lin}l_)swup
= aW (D).

Since the left side is independent of a, we have

n->w

lim sup dL}Z‘@ = W(D).

640/10/2-2
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Finally, we note that
ra(f) = half) (n=0,1,2,..),
and this implies

= lim sup

n—-w

dural f) duhn(f)
R, R,

lim sup

This completes the proof of (1.1).

3. AN ExaMPLE

The function G(z) = # (z/ W(Z)), where #” is the function of Theorem A,
is of E-type 1 and has the property that each of G, 2G, 2°G,... has a zero on
the circle | z | = W(2). Define the function

& PG
F(z) =1+ Z ( R)
k
and note that the R-type of F(z) is
linklﬁiup | agRy *+ Ry |M* = 1i11,€19§0up | D*GO)|V/x = 1,
since the E-type of G is 1. We shall show that the function F(z) satisfies the
inequality
lin}aswup 6MI’{‘(—F—) < W(2), 3.1)

which will complete the proof of Theorem 1.

LemMMA. Let G(2) = # (z/ W(2)), where W~ is the function of Theorem A,
and let
- Gk G(O)

F@) =1+ 3 3R *
If, forn > 1
Fn(Z) = gnF(RnZ/dn) ean Rn
= ¥ 760 | :
7;0 © Ruyy * Ry

e"l
en+kdnk

; e,z®,

then
lim {Fu(2) — 9°G(@)) =

uniformly on compact subsets of | z | << ¢(E).
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Proof. Supposee > 0and 0 < r << ¢(E). Choose r; so thatr < r < c(E),
and choose N so that d; > r,, and so that

(r/r)™ $n(2) < €/4.
Choose N; so that N; > N and so that if » << N, , then

2 'Rﬂk e’n

Rn+1 Rn+k en+kdn

—1

€
ekIZIk<‘—'-
k=0 2

Now suppose that | z| < r and # << N. Then

Fo(2) — 97G(z) = Nf Gr+EG(0) [ Ru? n__ 1] e,2t
=0 Ryiy - Ryyy en+kdnk
l R e
G0 n t— — 1] ez~
+ kgvl ( ) |:Rn+1 “* Ropp en+kdnk ] x

Note that from part (b) of Theorem A, we have
| 2FG(0)] < 1 (k=0,1,2,.),

and, hence, the absolute value of the first sum does not exceed /2. The
absolute value of the second sum does not exceed

N ezl Y eplzlt
ey |z e, |z
k=N, Rn+1 - Ryix en+kdnk k=N,
[+ 4] e e
> p ';Ikekr"—i— Y et
k=N S“n+k k=N

This completes the proof of the lemma.
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To complete the proof of Theorem 1, suppose that (3.1) is false. Then,
for some ¢ > 0, we can find an increasing sequence of positive integers {1, }m.
such that

rO(F'nm) = R 2 W(@) + € (3'2)

Nm

and such that {@"~G} is uniformly convergent on compact subsets of
| z| < ¢(E)to afunction g of E-type 1 or less. The function g is not identically
zero, since from Theorem A we have

0.04 < onax; | 2"*G0) <1 (n=20,1,2,.).

The function G has the property that it and each of 2G, 2%G,... has a zero
on | z | = W(Z). Hence, from Hurwitz’ theorem

ro(g) = W(2)
and
o, (8) = W(D) (m=1,2,..).

But the lemma guarantees that the sequence {F, } also has limit g, and our
assumption prevents g from having a zero in the disc | z | << W(2) + e. This
establishes (3.1).

4. UNIVALENCE OF THE SEQUENCE (2%)y

Let 9, be the operator corresponding to the sequence
{nf(n + 1) dp iy

Note that &2, = D@D, and that 2, is well defined; that is, the arbitrary
constant introduced by D-! is annihilated by £. Since this sequence is
nondecreasing, we see that the operator &, possesses a Whittaker constant
W(2,). Note also that the comparison function for &, is

E2) = ) éz*
k=0
where é;, = 1 and

-1 n-+1

T A day (n 1) dienis .

Hk+ldk+1

Therefore, E,(z) = d,E’'(z), E, has the same radius of convergence as E, and
E,-type agrees with E-type.
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Let p,(f) denote the radius of univalence (with respect to 0) of the function
2f. We shall make use of the fact that if the convex hull of f'(] z | < r) does
not contain 0, then fis univalent in | z | < r (this is equivalent to the fact that
Zef' > 0 implies univalence of f).

Since the sequence {(n + 1)/(n -+ 2)d,.o/(n/(n + 1)d,41}r_; i nonin-
creasing and has limit 1, Theorem 1 implies that if fis of R-type 1 or less then

. n_ di(f) _ . dnhn(f)
hrr'}%smu WE1 R, 11“,,150“1’ R, = W(2,).

Since f' is of R-type 1 or less if f'is, we apply the theorem to f'. Hence, we have

lim sup 9’1‘% = W(Z,).

n->w0

Now, 9, = (D2DY)* = DZ*D1, and we see that
h(f") = sup{r: 0 does not belong to the convex hull of DZ"f(| z | < r)}.

From our earlier observation, we have
Pl @7f) = palf) =1,
for each r in the set above, and this implies that

palf) Z ho(f)  (n=0,1,2,..).
Thus,

Gupnl]) < fim sup @’%(Q > W@

Finally, we note from our remarks in the Introduction that there is a
function #; of E,-type, and hence E-type, W(2,) such that each of
W, QW , D°W, ,...hasazero on the disk [ z | = 1. By an argument similar
to that in Section 3, we can show the existence of a function P of R-type 1
such that

lim sup i"’R"ﬂ < W@y,

n->w0

where r,(P) denote the least modulus of a zero of 2,°P. Let F(z) denote an
indefinite integral of P. Then &,"P = DZ*F, and since univalent functions
have nonvanishing derivatives, we have

pu(F) < ry(P).
This implies
lim sup ﬂlp_]g@ < W(DY).

now

Collecting these remarks, we have the following theorem.
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THEOREM 2. Let f be an analytic function of R-type 1 or less, and suppose f
is not a polynomial. Then

lim sup -‘i"/;;‘ﬁ = W(Z,).

7o

Moreover, there is an analytic function F of R-type 1 such that equality holds
in the above inequality.
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