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1. INTRODUCTION

Let j(z) be a function analytic in a neighborhood of 0. The Goncarov
constant G is the infimum of the numbers c for which there exists a function!
analytic in Iz I < 1,f'¢= 0, and a sequence of points {zn}:=o, Iznl ~ cj(n + 1),
such that jln)(zn) = 0. The Whittaker constant W is defined similarly for
functions of exponential type 1, and with I Zn I ~ c. In [1], Boas conjectured
that G = W, and this conjecture was settled in the affirmative by the first
author in [2].

Pommiez [3] has studied a problem which bears a striking resemblence to
the above. The shift operator // transforms the function

00

into //j(z) = I anzn- 1•

n~l

For k = 0, 1,2,... , the kth iterate of // is given by

//'1(z) = I anzn- k
•

n~k

Pommiez defines the Whittaker constant for the shift operator to be the
infimum of the numbers c for which there exists a function! analytic in
I z I < 1, ! '¢= 0, and a sequence of points {zn}:~o, I Zn I ~ c, such that
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g'''j(z,,) = 0. He also defines a similar constant for entire functions of order p
and type T, with I z" [ ~ c(k + l)l/p/(pT)l/p. In [4], Shaw proved that the
two constants for the shift operator were also equal.

In [5], we introduced a class of operators ot for analytic functions which
includes the derivative and shift operators as special cases. For a specific
operator i$ E ot, we define a growth measure for analytic functions called
E-type, and give a characterization of the behavior of the zeros of f, i$f,
i$2j, ... for analytic functions of finite E-type. This characterization includes,
as special cases, the determination of the Whittaker constant for both the
shift and derivative operators. In this paper, we consider a more general
setting, in which the growth measure need not be defined in terms of the
specific operator!!fl, and investigate the behavior of the zeros off, i$f, i$2j, ....
We obtain a relationship between these zeros and functions of a certain
specified growth which allows us to conclude, in the special case of derivatives,
that G = W; also that equality holds between the two constants in the case
of the shift operator.

Let {dn};:'~l denote a nondecreasing sequence of positive numbers, and let i$

denote the operator which transforms the function

fez) = L anzn
n~O

00

into i$j(z) = L dnanzn- 1•

n=l

For k = 0, 1,2,... , the kth iterate of i$ is given by

00

i$kj(Z) = L dn .. , dn_k+1anZn-k = I (en-k/en) anzn-",
n=k n=k

where eo = I, and en = (d1 .. , dn)-l, 11 = 1,2,.... If dn = 11, i$ corresponds
to the ordinary derivative operator, which we denote by D. If dn = I, i$

reduces to the shift operator .'7.
Set

E(z) = I enzn,
n=O

and let c(E) denote the radius of convergence of E. From the monotonicity
of {dn} we have

c(E) = lim dn = sup dn •
n~OCJ l::;;;;n<:::o:>

Define the E-type of the functionj(z) = L anzn to be the number

TE(f) = lim sup Ian/en Il/n = lim sup I i$nj(O)!l/n.
n-7OCJ n-700
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If c(E) < 00, we see that
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TE(f) = c(E)/c(f),

where c(f) denotes the radius of convergence off. If E(z) is entire, E-type is
a growth measure introduced by L. Nachbin [6] which can be related to the
growth of the maximum modulus off. In particular, if dn = n, E-type agrees
with exponential type and E(z) = eZ

•

We shall say the operator g; possess a Whittaker constant if there is a
number W(g;) with the following properties:

(i) °< W(EC) < c(E);

(ii) If TE(f) < W(g;), and each off, g;f, g;2j, ... has a zero in the closed
disk otl = {z: I z I ~ I}, thenf = 0;

(iii) There exists a function F such that TE(F) = W(g;) and each of
F, g;F, g;2F, ... has a zero in 0/1.

In [5], we proved that every operator g; possesses a Whittaker constant,
and gave an exact determination for W(g;).

For a function f analytic in a neighborhood of 0, let rn(f) denote the least
modulus of a zero of g;nf (rn(f) = 00 if g;nf has no zero), and define the
number hn(f) by

hn(f) = sup{r: 0 does not belong to the convex hull of f!2''fC z: ,C:;; r)}.

Let {Rn}:~l be a second nondecreasing sequence of positive numbers. For
a function fez) = L: anz", we call the analogous growth measure

TR(f) = lim sup I anRl ... Rn 1
1/"

n~oo

the R-type of ;: Additionally, we require that the sequences [dn}::'=l and
{Rn}:~l satisfy

(a) {dn+l/dnr:=l is a nonincreasing sequence with limit I;

(b) limn~oo Rn+l/Rn = 1.

Note that if we take Rn = (n/pT)l/p, andfis a function of R-type 1, thenf is
an entire function of order p and type T.

We shall need the following results from [5].

THEOREM A. There is a function "fI/ whose E-type is W(g;) which has the
following properties:

(a) "fI/(O) = 1 and I ECk"fl/(O) I ~ (W(g;))k (k = 1,2,...);

(b) maxO<k<U I ECn+k"fl/(O)I/(W(g;))n+k ;;?: 0.04 (n = 0, 1,2,...);

(c) each of"fl/, f!2"f1/, EC2"f1/, ... has a zero on the circle I z I = 1.
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THEOREM B. Iff is an analytic function of E-type 1 or less, and f is not a
polynomial, then

lim sup hn(f) ?o: W(.~).n->co

Our principal results are stated below.

THEOREM 1. Let f be an analytic function with R-type TR(f) ~ 1, and
suppose that f is not a polynomial. Then

Moreover, there is an analytic function F with R-type TR(F) = 1 such that
equality holds in (Ll).

Note that if we take the sequence dn = nand Rn - 1, we obtain an
equivalent form of the statement that G = W. Similarly, if we take
Rn == (njpT)l/o and dn - 1, we obtain equality of the two constants for the
shift operator.

2. THE SEQUENCE hn(f)

Letf(z) be an analytic function of R-type 1 or less. We begin by establishing
the inequality (Ll).

Suppose first thatfis of R-type strictly less than 1. For each positive integer
n for which an+1 # 0, consider the sequence

fn(z) = fi)nf(Rnzjdn) - fi)nf(O) en
an +lRn+1

Note that TR(fn) = RnTR(f)jdn , and, therefore,

(f,) = dn(suPn->co Rn) >-:~ >-: d
c n RnTR(f):/' TR(f):/' n'

Since the R-type of f is strictly less than 1, there is an infinite set S of
positive integers such that, if n E S,

(k = 0, 1,2,...).
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Hence, n EO S, we have

IIn(z) I ~ L Rnken d k ek I z II.
Ie~O Rn+1 ... Rn+ken+k n

(2.1)

We will use this estimate to show that the sequence {fn}nES is uniformly
bounded on compact subsets of c(E).

Note that

~ en I II. = ~ dn+1 ... dn+k 1 I lie
1... d I. ele z 1... d k d d z
Ie~O en+k n Ie~O n 1 ... Ie

= ~ dk+1'" dn+k~ ~ ~ (d )n~
1... d . .. d d Ie ~ en 1... n+k d k '
k~() 1 n n k~() n

and, hence, the radius of convergence of this series is at least dn . Let

I z! < dno

Then, for each positive integer k, we have

since the sequence {dn+1/dn}:~l is nonincreasing. It follows that the sequence
{4>k(Z)}~~n is nonincreasing for each z in I z I < dn .

Now let K be a compact subset of c(E). Then we may choose an integer N
so large that K is a subset of I z I < dN • From (2.1) we conclude that

z¢K,

for n > N. It follows immediately that the sequence {fn}nES is uniformly
bounded on compact subsets of c(E) and, hence, that there is a subsequence
{In }:~1 which converges uniformly on compact subsets of c(E) to a function
g(z). Since ~kg(O) = limm-->oo ~lelnJO), k = 0, 1,2,... , and

lim ( em k )l/m = lim (dm+1 ... dm+k )l/m = 1,
m->oo em+ledm m->oo d", dm
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we have TE(g) ;> 1. Also, ~g(O) = limm -+oo dm+lRmjRm+ldm = 1, and, hence,
g is a nonconstant function.

For j = 0, 1,2,... , we have ho(~jfn) = dnhn+if)jRn . Since g is a non­
constant function, we have

and

I
, dnmhnm+if)

= 1m ---"~---"-
m-7CO Rnm

= lim hifnj
m->ro

= h;(g),

for every positive integer j such that ~jg is nonconstant. If, for some j, ~jg is
constant, let k + 1 denote the least such j. Then ~kg is a polynomial of
degree 1, and

Therefore,

if g is a polynomial, and

lim sup dnhn(f);> sup h;(g)
n->oo R n 0";;;/<:00

otherwise. Since

and °TE(g) ~ 1, the result follows by applying Theorem B.
If/is of R-type TR(f) ~ 1, we consider the function

fa(z) = f(az), O<a<l.

Then TRUa) = aTR(f) < I, and from the above we obtain

lim sup dnhn(f) = a lim sup dnhnUa)
n->oo Rn n->ro Rn

;> aW(~).

Since the left side is independent of a, we have

lim sup dnhn(f) ;> W(~).
n->ro R n



118

Finally, we note that
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and this implies

(n = 0, 1, 2, ...),

This completes the proof of (Ll).

3. AN EXAMPLE

The function G(z) = if/'(zjW(EZ)), where if/' is the function of Theorem A,
is of E-type 1 and has the property that each of G, EZG, EZ2G, ... has a zero on
the circle I z I = W(.EZ). Define the function

and note that the R-type of F(z) is

lim
k

sup I akRl ... R k [11k = lim
k

sup I .EZk G(O)[l/k = 1,
-HO -+00

since the E-type of Gis 1. We shall show that the function F(z) satisfies the
inequality

lim sup dnrn(F) :s;; W(EZ) ,
n-><XJ Rn

which will complete the proof of Theorem 1.

(3.1)

LEMMA. Let G(z) = if/'(zjW(EZ)), where if/' is the function of Theorem A,
and let

If,for n ~ 1,

Fn(z) = EZnF(Rnzjdn) enRl '" Rn

then
lim {Fn(z) - .EZnG(z)} = 0
n-><XJ

uniformly on compact subsets of [ z [ < c(E).
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Proof Suppose E > °and°< r < c(E). Choose r1 so that r < r1 < c(E),
and choose N so that dN > r1 , and so that

(r/r1)N rpN(Z) < E/4.

Choose N1 so that N1 > N and so that if n < N1 , then

Now suppose that I Z I ~ , and n < N. Then

Note that from part (b) of Theorem A, we have

(k = 0, 1,2,...),

and, hence, the absolute value of the first sum does not exceed E/2. The
absolute value of the second sum does not exceed

'" R k '"I· n en e k I Z I
k + I ek I Z Ik

k~Nl Rn+l ... R n+ k en+kdn
k

k=N
1

~ f e'd k ek,k + f ek,k
k=N en+k n k=N

This completes the proof of the lemma.
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To complete the proof of Theorem 1, suppose that (3.1) is false. Then,
for some E > 0, we can find an increasing sequence of positive integers {nm}~=1

such that

(3.2)

and such that {E0nmG} is uniformly convergent on compact subsets of
I z I < c(E) to a function g of E-type 1 or less. The function g is not identically
zero, since from Theorem A we have

0.04 ~ max [E0,t+kG(O)1 ~ 1
O~k~9

(n = 0, 1,2,...).

The function G has the property that it and each of E0G, E02G, ... has a zero
on I z I = W(E0). Hence, from Hurwitz' theorem

'O(g) = W(E0)

and
(m = 1,2,...).

But the lemma guarantees that the sequence {Fn } also has limit g, and our
assumption prevents g from having a zero in the disc I z I < W(E0) + E. This
establishes (3.1).

4. UNIVALENCE OF THE SEQUENCE (E0kf)~

Let E01 be the operator corresponding to the sequence

Note that E01 = DE0D-l, and that E01 is well defined; that is, the arbitrary
constant introduced by D-1 is annihilated by E0. Since this sequence is
nondecreasing, we see that the operator E01 possesses a Whittaker constant
W(E01). Note also that the comparison function for E01 is

00

E1(z) = L ekZk,
k=O

where eo = 1 and

A ln k l-1 n + 1
en = I1 k + 1 dk+l = d ... d

k=1 2 n+1

Therefore, E1(z) = d1E'(z), E1 has the same radius of convergence as E, and
E1-type agrees with E-type.
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Let Pn(f) denote the radius of univalence (with respect to 0) of the function
!:»nf We shall make use of the fact that if the convex hull of1'0 z I :s;; r) does
not contain 0, thenjis univalent in I z I :s;; r (this is equivalent to the fact that
f!lej' > 0 implies univalence of f).

Since the sequence {en + l)/(n + 2)dn+2/(n/(n + l))dn+1}:~l is nonin­
creasing and has limit 1, Theorem 1 implies that ifjis of R-type 1 or less then

lim sup-~ dnhn(f) = lim sup dnhn(f) ~ W(!:»l)'
n->xo n + 1 R n n->oo R n

SinceI' is of R-type 1 or less ifjis, we apply the theorem to1'. Hence, we have

lim sup dnhnCj') ~ W(!:»J.
n-'<OO R n

Now, !?)lk = (D!?)D-1)k = D!?)kD-\ and we see that

hn(f') = sup{r: 0 does not belong to the convex hull of D!?)nf(1 z I <; r)}.

From our earlier observation, we have

for each r in the set above, and this implies that

(n = 0, 1,2,...).

Thus,

Finally, we note from our remarks in the Introduction that there is a
function if; of Er-type, and hence E-type, W(!?)l) such that each of
if; ,i211if; , !?)12if; , ... has a zero on the disk I z I = 1. By an argument similar
to that in Section 3, we can show the existence of a function P of R-type 1
such that

lim sup dnrn(P) < W(!?))
R ---::: l'n--7OC!· n

where rn(P) denote the least modulus of a zero of !?)lnp. Let F(z) denote an
indefinite integral of P. Then !?)lnp = D!?)/cF, and since univalent functions
have nonvanishing derivatives, we have

This implies

lim sup dnPnCF) :::;; W(!?)J.
n-'<XO R

Collecting these remarks, we have the following theorem.



122 BUCKHOLTZ AND FRANK

THEOREM 2. Let f be an analytic function of R-type 1 or less, and suppose f
is not a polynomial. Then

Moreover, there is an analytic function F of R-type 1 such that equality holds
in the above inequality.
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