Whittaker Constants, II

J. D. BUCKHOLTZ

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

AND

J. L. FRANK

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Communicated by I. J. Schoenberg

1. INTRODUCTION

Let f(z) be a function analytic in a neighborhood of 0. The Gončarov constant G is the infimum of the numbers c for which there exists a function f analytic in |z| < 1, $f \neq 0$, and a sequence of points $\{z_n\}_{n=0}^{\infty}$, $|z_n| \leq c/(n+1)$, such that $f^{(n)}(z_n) = 0$. The Whittaker constant W is defined similarly for functions of exponential type 1, and with $|z_n| \leq c$. In [1], Boas conjectured that G = W, and this conjecture was settled in the affirmative by the first author in [2].

Pommiez [3] has studied a problem which bears a striking resemblence to the above. The shift operator \mathscr{S} transforms the function

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 into $\mathscr{S}f(z) = \sum_{n=1}^{\infty} a_n z^{n-1}$.

For k = 0, 1, 2, ..., the kth iterate of \mathcal{S} is given by

$$\mathscr{S}^{k}f(z) = \sum_{n=k}^{\infty} a_{n} z^{n-k}.$$

Pommiez defines the Whittaker constant for the shift operator to be the infimum of the numbers c for which there exists a function f analytic in |z| < 1, $f \neq 0$, and a sequence of points $\{z_n\}_{n=0}^{\infty}$, $|z_n| \leq c$, such that

 $\mathscr{S}^k f(z_k) = 0$. He also defines a similar constant for entire functions of order ρ and type τ , with $|z_k| \leq c(k+1)^{1/\rho}/(\rho\tau)^{1/\rho}$. In [4], Shaw proved that the two constants for the shift operator were also equal.

In [5], we introduced a class of operators \mathcal{O} for analytic functions which includes the derivative and shift operators as special cases. For a specific operator $\mathcal{D} \in \mathcal{O}$, we define a growth measure for analytic functions called *E*-type, and give a characterization of the behavior of the zeros of f, $\mathcal{D}f$, $\mathcal{D}^2 f$,... for analytic functions of finite *E*-type. This characterization includes, as special cases, the determination of the Whittaker constant for both the shift and derivative operators. In this paper, we consider a more general setting, in which the growth measure need not be defined in terms of the specific operator \mathcal{D} , and investigate the behavior of the zeros of f, $\mathcal{D}f$, $\mathcal{D}^2 f$,.... We obtain a relationship between these zeros and functions of a certain specified growth which allows us to conclude, in the special case of derivatives, that G = W; also that equality holds between the two constants in the case of the shift operator.

Let $\{d_n\}_{n=1}^{\infty}$ denote a nondecreasing sequence of positive numbers, and let \mathscr{D} denote the operator which transforms the function

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 into $\mathscr{D}f(z) = \sum_{n=1}^{\infty} d_n a_n z^{n-1}$.

For k = 0, 1, 2, ..., the kth iterate of \mathcal{D} is given by

$$\mathscr{D}^k f(z) = \sum_{n=k}^{\infty} d_n \cdots d_{n-k+1} a_n z^{n-k} = \sum_{n=k}^{\infty} (e_{n-k}/e_n) a_n z^{n-k},$$

where $e_0 = 1$, and $e_n = (d_1 \cdots d_n)^{-1}$, $n = 1, 2, \dots$. If $d_n = n$, \mathscr{D} corresponds to the ordinary derivative operator, which we denote by D. If $d_n \equiv 1$, \mathscr{D} reduces to the shift operator \mathscr{S} .

Set

$$E(z)=\sum_{n=0}^{\infty} e_n z^n,$$

and let c(E) denote the radius of convergence of E. From the monotonicity of $\{d_n\}$ we have

$$c(E) = \lim_{n \to \infty} d_n = \sup_{1 \le n < \infty} d_n \, .$$

Define the *E*-type of the function $f(z) = \sum a_n z^n$ to be the number

$$\tau_E(f) = \limsup_{n \to \infty} |a_n/e_n|^{1/n} = \limsup_{n \to \infty} |\mathscr{D}^n f(0)|^{1/n}$$

If $c(E) < \infty$, we see that

$$\tau_E(f) = c(E)/c(f),$$

where c(f) denotes the radius of convergence of f. If E(z) is entire, E-type is a growth measure introduced by L. Nachbin [6] which can be related to the growth of the maximum modulus of f. In particular, if $d_n = n$, E-type agrees with exponential type and $E(z) = e^z$.

We shall say the operator \mathscr{D} possess a Whittaker constant if there is a number $W(\mathscr{D})$ with the following properties:

(i)
$$0 < W(\mathcal{D}) < c(E);$$

(ii) If $\tau_E(f) < W(\mathcal{D})$, and each of $f, \mathcal{D}f, \mathcal{D}^2 f, \dots$ has a zero in the closed disk $\mathcal{U} = \{z : |z| \leq 1\}$, then $f \equiv 0$;

(iii) There exists a function F such that $\tau_E(F) = W(\mathscr{D})$ and each of $F, \mathscr{D}F, \mathscr{D}^2F,...$ has a zero in \mathscr{U} .

In [5], we proved that every operator \mathcal{D} possesses a Whittaker constant, and gave an exact determination for $W(\mathcal{D})$.

For a function f analytic in a neighborhood of 0, let $r_n(f)$ denote the least modulus of a zero of $\mathscr{D}^n f$ $(r_n(f) = \infty$ if $\mathscr{D}^n f$ has no zero), and define the number $h_n(f)$ by

 $h_n(f) = \sup\{r: 0 \text{ does not belong to the convex hull of } \mathscr{D}^n f(|z| \leq r)\}.$

Let $\{R_n\}_{n=1}^{\infty}$ be a second nondecreasing sequence of positive numbers. For a function $f(z) = \sum a_n z^n$, we call the analogous growth measure

$$\tau_{R}(f) = \limsup_{n \to \infty} |a_{n}R_{1} \cdots R_{n}|^{1/n}$$

the *R*-type of *f*. Additionally, we require that the sequences $\{d_n\}_{n=1}^{\infty}$ and $\{R_n\}_{n=1}^{\infty}$ satisfy

- (a) $\{d_{n+1}/d_n\}_{n=1}^{\infty}$ is a nonincreasing sequence with limit 1;
- (b) $\lim_{n\to\infty} R_{n+1}/R_n = 1.$

Note that if we take $R_n = (n/\rho\tau)^{1/\rho}$, and f is a function of R-type 1, then f is an entire function of order ρ and type τ .

We shall need the following results from [5].

THEOREM A. There is a function \mathcal{W} whose E-type is $W(\mathcal{D})$ which has the following properties:

(a) $\mathscr{W}(0) = 1$ and $|\mathscr{D}^k \mathscr{W}(0)| \leq (\mathscr{W}(\mathscr{D}))^k$ (k = 1, 2, ...);

(b)
$$\max_{0 \le k \le 9} | \mathscr{D}^{n+k} \mathscr{W}(0)| / (\mathscr{W}(\mathscr{D}))^{n+k} \ge 0.04 \quad (n = 0, 1, 2, ...);$$

(c) each of $\mathcal{W}, \mathcal{D}\mathcal{W}, \mathcal{D}^2\mathcal{W}, \dots$ has a zero on the circle |z| = 1.

114

115

THEOREM B. If f is an analytic function of E-type 1 or less, and f is not a polynomial, then

$$\limsup_{n\to\infty}h_n(f) \geqslant W(\mathscr{D}).$$

Our principal results are stated below.

THEOREM 1. Let f be an analytic function with R-type $\tau_R(f) \leq 1$, and suppose that f is not a polynomial. Then

$$\limsup_{n\to\infty}\frac{d_nr_n(f)}{R_n}\geqslant\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n}\geqslant W(\mathscr{D}).$$
(1.1)

Moreover, there is an analytic function F with R-type $\tau_R(F) = 1$ such that equality holds in (1.1).

Note that if we take the sequence $d_n = n$ and $R_n \equiv 1$, we obtain an equivalent form of the statement that G = W. Similarly, if we take $R_n = (n/\rho\tau)^{1/\rho}$ and $d_n \equiv 1$, we obtain equality of the two constants for the shift operator.

2. The Sequence $h_n(f)$

Let f(z) be an analytic function of *R*-type 1 or less. We begin by establishing the inequality (1.1).

Suppose first that f is of R-type strictly less than 1. For each positive integer n for which $a_{n+1} \neq 0$, consider the sequence

$$f_n(z) = \frac{\mathscr{D}^n f(R_n z/d_n) - \mathscr{D}^n f(0)}{a_{n+1} R_{n+1}} e_n$$
$$= \sum_{k=1}^{\infty} \frac{a_{n+k} R_n^k e_n e_k}{a_{n+1} d_n^k e_{n+k} R_{n+1}} z^k.$$

Note that $\tau_R(f_n) = R_n \tau_R(f)/d_n$, and, therefore,

$$c(f_n) = \frac{d_n(\sup_{n \to \infty} R_n)}{R_n \tau_R(f)} \ge \frac{d_n}{\tau_R(f)} \ge d_n \,.$$

Since the *R*-type of f is strictly less than 1, there is an infinite set S of positive integers such that, if $n \in S$,

$$\left|\frac{a_{n+k}R_1\cdots R_{n+k}}{a_{n+1}R_1\cdots R_{n+1}}\right| \leq 1 \qquad (k=0,\,1,\,2,...).$$

Hence, $n \in S$, we have

$$|f_n(z)| \leqslant \sum_{k=0}^{\infty} \frac{R_n^{k} e_n}{R_{n+1} \cdots R_{n+k} e_{n+k} d_n^{k}} e_k | z |^k$$

$$\leqslant \sum_{k=0}^{\infty} \frac{e_n}{e_{n+k} d_n^{k}} e_k | z |^k.$$
(2.1)

We will use this estimate to show that the sequence $\{f_n\}_{n \in S}$ is uniformly bounded on compact subsets of c(E).

Note that

$$\sum_{k=0}^{\infty} \frac{e_n}{e_{n+k}d_n^k} e_k |z|^k = \sum_{k=0}^{\infty} \frac{d_{n+1}\cdots d_{n+k}}{d_n^k} \frac{1}{d_1\cdots d_k} |z|^k$$
$$= \sum_{k=0}^{\infty} \frac{d_{k+1}\cdots d_{n+k}}{d_1\cdots d_n} \frac{|z|^k}{d_n^k} \leqslant e_n \sum_{k=0}^{\infty} (d_{n+k})^n \frac{|z|^k}{d_n^k},$$

and, hence, the radius of convergence of this series is at least d_n . Let

$$\phi_n(z) = \sum_{k=0}^\infty rac{e_n}{e_{n+k}d_n^{-k}} e_k \mid z \mid^k, \quad \mid z \mid < d_n \,.$$

Then, for each positive integer k, we have

$$\begin{aligned} \frac{e_n}{e_{n+k}d_n^k} &= \frac{d_{n+1}\cdots d_{n+k}}{d_n^k} \\ &= \left(\frac{d_{n+1}}{d_n}\right) \left(\frac{d_{n+1}}{d_n} \cdot \frac{d_{n+2}}{d_{n+1}}\right) \cdots \left(\frac{d_{n+1}}{d_n} \cdot \frac{d_{n+2}}{d_{n+1}} \cdots \frac{d_{n+k}}{d_{n+k-1}}\right) \\ &\leq \left(\frac{d_n}{d_{n-1}}\right) \left(\frac{d_n}{d_{n-1}} \cdot \frac{d_{n+1}}{d_n}\right) \cdots \left(\frac{d_n}{d_{n-1}} \cdot \frac{d_{n+1}}{d_n} \cdots \frac{d_{n+k-1}}{d_{n+k-2}}\right) \\ &= \frac{e_{n-1}}{e_{n+k-1}d_{n-1}^k}, \end{aligned}$$

since the sequence $\{d_{n+1}/d_n\}_{n=1}^{\infty}$ is nonincreasing. It follows that the sequence $\{\phi_k(z)\}_{k=n}^{\infty}$ is nonincreasing for each z in $|z| < d_n$.

Now let K be a compact subset of c(E). Then we may choose an integer N so large that K is a subset of $|z| < d_N$. From (2.1) we conclude that

$$|f_n(z)| \leq \phi_n(z) \leq \phi_N(z), \qquad z \notin K,$$

for n > N. It follows immediately that the sequence $\{f_n\}_{n \in S}$ is uniformly bounded on compact subsets of c(E) and, hence, that there is a subsequence $\{f_n\}_{m=1}^{\infty}$ which converges uniformly on compact subsets of c(E) to a function g(z). Since $\mathscr{D}^k g(0) = \lim_{m \to \infty} \mathscr{D}^k f_{n_m}(0), k = 0, 1, 2,...,$ and

$$\lim_{m\to\infty}\left(\frac{e_m}{e_{m+k}d_m{}^k}\right)^{1/m}=\lim_{m\to\infty}\left(\frac{d_{m+1}}{d_m}\cdots\frac{d_{m+k}}{d_m}\right)^{1/m}=1,$$

we have $\tau_E(g) \ge 1$. Also, $\mathscr{D}g(0) = \lim_{m \to \infty} d_{m+1}R_m/R_{m+1}d_m = 1$, and, hence, g is a nonconstant function.

For j = 0, 1, 2, ..., we have $h_0(\mathscr{D}^j f_n) = d_n h_{n+j}(f)/R_n$. Since g is a non-constant function, we have

$$\lim_{m \to \infty} \frac{d_{n_m} h_{n_m}(f)}{R_{n_m}} = \lim_{m \to \infty} h_0(f_{n_m}) = h_0(g),$$

and

$$\lim_{m\to\infty}\frac{d_{n_m+j}h_{n_m+j}(f)}{R_{n_m+j}} = \lim_{m\to\infty}\frac{d_{n_m}h_{n_m+j}(f)}{R_{n_m}}$$
$$= \lim_{m\to\infty}h_j(f_{n_m})$$
$$= h_j(g),$$

for every positive integer j such that $\mathscr{D}^{j}g$ is nonconstant. If, for some j, $\mathscr{D}^{j}g$ is constant, let k + 1 denote the least such j. Then $\mathscr{D}^{k}g$ is a polynomial of degree 1, and

$$\limsup_{m\to\infty}\frac{d_{n_m+k}h_{n_m+k}(f)}{R_{n_m+k}}=h_k(g)=+\infty.$$

Therefore,

$$\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n}=+\infty$$

if g is a polynomial, and

$$\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n}\geqslant \sup_{0\leqslant j<\infty}h_j(g)$$

otherwise. Since

$$\sup_{0\leqslant j<\infty}h_j(g)\geqslant \limsup_{j\to\infty}h_j(g),$$

and $\tau_E(g) \leq 1$, the result follows by applying Theorem B. If f is of R-type $\tau_R(f) \leq 1$, we consider the function

$$f_a(z) = f(az), \quad 0 < a < 1.$$

Then $\tau_R(f_a) = a\tau_R(f) < 1$, and from the above we obtain

$$\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n} = a\limsup_{n\to\infty}\frac{d_nh_n(f_a)}{R_n}$$

$$\geq aW(\mathcal{D}).$$

Since the left side is independent of a, we have

$$\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n} \ge W(\mathscr{D}).$$

640/10/2-2

Finally, we note that

$$r_n(f) \ge h_n(f)$$
 $(n = 0, 1, 2,...),$

and this implies

$$\limsup_{n\to\infty}\frac{d_nr_n(f)}{R_n} \ge \limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n}.$$

This completes the proof of (1.1).

3. An Example

The function $G(z) = \mathscr{W}(z/\mathscr{W}(\mathscr{D}))$, where \mathscr{W} is the function of Theorem A, is of *E*-type 1 and has the property that each of $G, \mathscr{D}G, \mathscr{D}^2G, \ldots$ has a zero on the circle $|z| = \mathscr{W}(\mathscr{D})$. Define the function

$$F(z) = 1 + \sum_{k=1}^{\infty} \frac{\mathscr{D}^k G(0)}{R_1 \cdots R_k} z^k,$$

and note that the R-type of F(z) is

$$\limsup_{k\to\infty} |a_k R_1 \cdots R_k|^{1/k} = \limsup_{k\to\infty} |\mathscr{D}^k G(0)|^{1/k} = 1,$$

since the *E*-type of G is 1. We shall show that the function F(z) satisfies the inequality

$$\limsup_{n \to \infty} \frac{d_n r_n(F)}{R_n} \leqslant W(\mathscr{D}), \tag{3.1}$$

which will complete the proof of Theorem 1.

LEMMA. Let $G(z) = \mathscr{W}(z/W(\mathscr{D}))$, where \mathscr{W} is the function of Theorem A, and let

$$F(z) = 1 + \sum_{k=1}^{\infty} \frac{\mathscr{D}^k G(0)}{R_1 \cdots R_k} z^k.$$

If, for $n \ge 1$,

$$F_n(z) = \mathscr{D}^n F(R_n z/d_n) \ e_n R_1 \cdots R_n$$

= $\sum_{k=0}^{\infty} \mathscr{D}^{n+k} G(0) \left\{ \frac{R_n^k}{R_{n+1} \cdots R_{n+k}} \right\} \left\{ \frac{e_n}{e_{n+k} d_n^k} \right\} \ e_k z^k,$

then

$$\lim_{n\to\infty} \{F_n(z) - \mathscr{D}^n G(z)\} = 0$$

uniformly on compact subsets of |z| < c(E).

Proof. Suppose $\epsilon > 0$ and 0 < r < c(E). Choose r_1 so that $r < r_1 < c(E)$, and choose N so that $d_N > r_1$, and so that

$$(r/r_1)^N \phi_N(z) < \epsilon/4$$

Choose N_1 so that $N_1 > N$ and so that if $n < N_1$, then

$$\sum_{k=0}^{N_1} \left| \frac{R_n^k}{R_{n+1} \cdots R_{n+k}} \frac{e_n}{e_{n+k} d_n^k} - 1 \right| e_k |z|^k < \frac{\epsilon}{2}.$$

Now suppose that $|z| \leq r$ and n < N. Then

$$F_n(z) - \mathscr{D}^n G(z) = \sum_{k=0}^{N_--1} \mathscr{D}^{n+k} G(0) \left[\frac{R_n^k}{R_{n+1} \cdots R_{n+k}} \frac{e_n}{e_{n+k} d_n^k} - 1 \right] e_k z^k$$
$$+ \sum_{k=N_1}^{\infty} \mathscr{D}^{n+k} G(0) \left[\frac{R_n^k}{R_{n+1} \cdots R_{n+k}} \frac{e_n}{e_{n+k} d_n^k} - 1 \right] e_k z^k.$$

Note that from part (b) of Theorem A, we have

$$|\mathscr{D}^{k}G(0)| \leq 1$$
 $(k = 0, 1, 2, ...),$

and, hence, the absolute value of the first sum does not exceed $\epsilon/2$. The absolute value of the second sum does not exceed

$$\sum_{k=N_{1}}^{\infty} \frac{R_{n}^{k}}{R_{n+1}\cdots R_{n+k}} \frac{e_{n}}{e_{n+k}d_{n}^{k}} e_{k} |z|^{k} + \sum_{k=N_{1}}^{\infty} e_{k} |z|^{k}$$

$$\leq \sum_{k=N}^{\infty} \frac{e_{n}}{e_{n+k}d_{n}^{k}} e_{k}r^{k} + \sum_{k=N}^{\infty} e_{k}r^{k}$$

$$\geq 2\sum_{k=N}^{\infty} \frac{e_{n}}{e_{n+k}d_{n}^{k}} e_{k}r^{k}$$

$$= 2\left(\frac{r}{r_{1}}\right)^{N} \sum_{k=N}^{\infty} \frac{e_{n}}{e_{n+k}d_{n}^{k}} e_{k}\left(\frac{r}{r_{1}}\right)^{k-N} r_{1}^{k}$$

$$\leq 2\left(\frac{r}{r_{1}}\right)^{N} \sum_{k=N}^{\infty} \frac{e_{n}}{e_{n+k}d_{n}^{k}} e_{k}r_{1}^{k}$$

$$\leq 2\left(\frac{r}{r_{1}}\right)^{N} \phi_{n}(r_{1})$$

$$\leq 2\left(\frac{r}{r_{1}}\right)^{N} \phi_{N}(r_{1}) < \frac{2\epsilon}{4} = \frac{\epsilon}{2}.$$

This completes the proof of the lemma.

To complete the proof of Theorem 1, suppose that (3.1) is false. Then, for some $\epsilon > 0$, we can find an increasing sequence of positive integers $\{n_m\}_{m=1}^{\infty}$ such that

$$r_0(F_{n_m}) = \frac{d_{n_m} r_{n_m}(F)}{R_{n_m}} \geqslant W(\mathscr{D}) + \epsilon, \qquad (3.2)$$

and such that $\{\mathscr{D}^{n_m}G\}$ is uniformly convergent on compact subsets of |z| < c(E) to a function g of E-type 1 or less. The function g is not identically zero, since from Theorem A we have

$$0.04 \leqslant \max_{0 \leqslant k \leqslant 9} | \mathscr{D}^{n+k}G(0) | \leqslant 1 \qquad (n = 0, 1, 2, ...).$$

The function G has the property that it and each of $\mathcal{D}G$, \mathcal{D}^2G ,... has a zero on $|z| = W(\mathcal{D})$. Hence, from Hurwitz' theorem

$$r_0(g) = W(\mathscr{D})$$

and

$$r_{n_m}(g) = W(\mathcal{D}) \qquad (m = 1, 2, \dots).$$

But the lemma guarantees that the sequence $\{F_{n_m}\}$ also has limit g, and our assumption prevents g from having a zero in the disc $|z| < W(\mathscr{D}) + \epsilon$. This establishes (3.1).

4. Univalence of the Sequence $(\mathscr{D}^k f)_0^{\infty}$

Let \mathscr{D}_1 be the operator corresponding to the sequence

$${n/(n+1) d_{n+1}}^{\infty}_{1}$$

Note that $\mathscr{D}_1 = D\mathscr{D}D^{-1}$, and that \mathscr{D}_1 is well defined; that is, the arbitrary constant introduced by D^{-1} is annihilated by \mathscr{D} . Since this sequence is nondecreasing, we see that the operator \mathscr{D}_1 possesses a Whittaker constant $W(\mathscr{D}_1)$. Note also that the comparison function for \mathscr{D}_1 is

$$E_1(z) = \sum_{k=0}^{\infty} \hat{e}_k z^k,$$

where $\hat{e}_0 = 1$ and

$$\hat{e}_n = \left\{\prod_{k=1}^n \frac{k}{k+1} d_{k+1}\right\}^{-1} = \frac{n+1}{d_2 \cdots d_{n+1}} = (n+1) d_1 e_{n+1}.$$

Therefore, $E_1(z) = d_1 E'(z)$, E_1 has the same radius of convergence as E, and E_1 -type agrees with E-type.

Let $\rho_n(f)$ denote the radius of univalence (with respect to 0) of the function $\mathscr{D}^n f$. We shall make use of the fact that if the convex hull of $f'(|z| \leq r)$ does not contain 0, then f is univalent in $|z| \leq r$ (this is equivalent to the fact that $\mathscr{R}ef' > 0$ implies univalence of f).

Since the sequence $\{(n + 1)/(n + 2)d_{n+2}/(n/(n + 1))d_{n+1}\}_{n=1}^{\infty}$ is nonincreasing and has limit 1, Theorem 1 implies that if f is of R-type 1 or less then

$$\limsup_{n\to\infty}\frac{n}{n+1}\frac{d_nh_n(f)}{R_n}=\limsup_{n\to\infty}\frac{d_nh_n(f)}{R_n}\geqslant W(\mathscr{D}_1).$$

Since f' is of R-type 1 or less if f is, we apply the theorem to f'. Hence, we have

$$\limsup_{n\to\infty}\frac{d_nh_n(f')}{R_n} \ge W(\mathscr{D}_1).$$

Now, $\mathscr{D}_1^k = (D\mathscr{D}D^{-1})^k = D\mathscr{D}^k D^{-1}$, and we see that

 $h_n(f') = \sup\{r: 0 \text{ does not belong to the convex hull of } D\mathcal{D}^n f(|z| \leq r)\}.$

From our earlier observation, we have

$$\rho_0(\mathscr{D}^n f) = \rho_n(f) \geqslant r,$$

for each r in the set above, and this implies that

$$\rho_n(f) \ge h_n(f') \quad (n = 0, 1, 2, ...).$$

Thus,

$$\limsup_{n\to\infty}\frac{d_n\rho_n(f)}{R_n}\geqslant\limsup_{n\to\infty}\frac{d_nh_n(f')}{R_n}\geqslant W(\mathscr{D}_1).$$

Finally, we note from our remarks in the Introduction that there is a function \mathscr{W}_1 of E_1 -type, and hence E-type, $\mathscr{W}(\mathscr{D}_1)$ such that each of $\mathscr{W}_1, \mathscr{D}_1 \mathscr{W}_1, \mathscr{D}_1^2 \mathscr{W}_1, \dots$ has a zero on the disk |z| = 1. By an argument similar to that in Section 3, we can show the existence of a function P of R-type 1 such that

$$\limsup_{n\to\infty}\frac{d_nr_n(P)}{R_n}\leqslant W(\mathscr{D}_1),$$

where $r_n(P)$ denote the least modulus of a zero of $\mathscr{D}_1^n P$. Let F(z) denote an indefinite integral of P. Then $\mathscr{D}_1^n P = D\mathscr{D}^k F$, and since univalent functions have nonvanishing derivatives, we have

$$\rho_n(F) \leqslant r_n(P).$$

This implies

$$\limsup_{n\to\infty} \frac{d_n\rho_n(F)}{R} \leqslant W(\mathscr{D}_1).$$

Collecting these remarks, we have the following theorem.

THEOREM 2. Let f be an analytic function of R-type 1 or less, and suppose f is not a polynomial. Then

$$\limsup_{n\to\infty} \frac{d_n\rho_n(f)}{R_n} \ge W(\mathscr{D}_1).$$

Moreover, there is an analytic function F of R-type 1 such that equality holds in the above inequality.

References

- 1. R. P. BOAS, An upper bound for the Gončarov constant, Duke Math. J. 4 (1948).
- 2. J. B. BUCKHOLTZ, Zeros of successive derivatives of entire functions, *Indian J. Math.* 13 (1971), 83-88.
- 3. M. POMMIEZ, Sur les zéros des restes successifs des series de Taylor, Ann. Fac. Sci. Univ. Toulouse 24 (1960), 77-165.
- 4. J. K. SHAW, Zeros of Partial Sums and Remainders of Power Series, Dissertation, Univ. of Kentucky, June, 1970.
- 5. J. D. BUCKHOLTZ AND J. L. FRANK, Whittaker constants, Proc. London Math. Soc. 23 (1971), 348-370.
- 6. L. NACHBIN, An extension of the notion of integral functions of the finite exponential type, *Arais Acad. Brasil Ciencias* 16 (1944), 143–147.